wavelib/denoise/denoise.c
2017-08-11 16:13:33 +05:30

278 lines
5.5 KiB
C

#include "denoise.h"
int compare_double(const void* a, const void* b)
{
double arg1 = *(const double*)a;
double arg2 = *(const double*)b;
if (arg1 < arg2) return -1;
if (arg1 > arg2) return 1;
return 0;
}
double median(double *x, int N) {
double sigma;
qsort(x, N, sizeof(double), compare_double);
if ((N % 2) == 0) {
sigma = (x[N/2 - 1] + x[N/2] ) / 2.0;
} else {
sigma = x[N/2];
}
return sigma;
}
double mad(double *x, int N) {
double sigma;
int i;
sigma = median(x,N);
for(i = 0; i < N;++i) {
x[i] = (x[i] - sigma) > 0 ? (x[i] - sigma) : -(x[i] - sigma);
}
sigma = median(x,N);
return sigma;
}
int minindex(double *arr, int N) {
double min;
int index,i;
min = DBL_MAX;
index = 0;
for(i = 0; i < N;++i) {
if (arr[i] < min) {
min = arr[i];
index = i;
}
}
return index;
}
void getDWTAppx(wt_object wt, double *appx,int N) {
/*
Wavelet decomposition is stored as
[A(J) D(J) D(J-1) ..... D(1)] in wt->output vector
Length of A(J) , N = wt->length[0]
*/
int i;
for (i = 0; i < N; ++i) {
appx[i] = wt->output[i];
}
}
void getDWTDetail(wt_object wt, double *detail, int N, int level) {
/*
returns Detail coefficents at the jth level where j = 1,2,.., J
and Wavelet decomposition is stored as
[A(J) D(J) D(J-1) ..... D(1)] in wt->output vector
Use getDWTAppx() to get A(J)
Level 1 : Length of D(J), ie N, is stored in wt->length[1]
Level 2 :Length of D(J-1), ie N, is stored in wt->length[2]
....
Level J : Length of D(1), ie N, is stored in wt->length[J]
*/
int i, iter, J;
J = wt->J;
if (level > J) {
printf("The decomposition only has %d levels", J);
}
iter = wt->length[0];
for (i = 1; i < level; ++i) {
iter += wt->length[i];
}
for (i = 0; i < N; ++i) {
detail[i] = wt->output[i + iter];
}
}
void visushrink(double *signal,int N,int J,char *wname,char *method,char *ext,char *thresh,double *denoised) {
int filt_len,iter,i,dlen,dwt_len,sgn, MaxIter;
double sigma,td,tmp;
wave_object wave;
wt_object wt;
double *dout;
wave = wave_init(wname);
filt_len = wave->filtlength;
MaxIter = (int) (log((double)N / ((double)filt_len - 1.0)) / log(2.0));
if (J > MaxIter) {
printf("\n Error - The Signal Can only be iterated %d times using this wavelet. Exiting\n",MaxIter);
exit(-1);
}
wt = wt_init(wave,method,N,J);
setDWTExtension(wt,ext);
dwt(wt,signal);
//Set sigma
iter = wt->length[0];
dlen = wt->length[J];
dout = (double*)malloc(sizeof(double) * dlen);
for (i = 1; i < J; ++i) {
iter += wt->length[i];
}
for(i = 0; i < dlen;++i) {
dout[i] = wt->output[iter+i];
}
sigma = mad(dout,dlen);
dwt_len = wt->outlength;
td = sqrt(2.0 * log(dwt_len)) * sigma / 0.6745;
if(!strcmp(thresh,"hard")) {
for(i = 0; i < dwt_len;++i) {
if (fabs(wt->output[i]) < td) {
wt->output[i] = 0;
}
}
} else if(!strcmp(thresh,"soft")) {
for(i = 0; i < dwt_len;++i) {
if (fabs(wt->output[i]) < td) {
wt->output[i] = 0;
} else {
sgn = wt->output[i] >= 0 ? 1 : -1;
tmp = sgn * (fabs(wt->output[i]) - td);
wt->output[i] = tmp;
}
}
}
idwt(wt,denoised);
free(dout);
wave_free(wave);
wt_free(wt);
}
void sureshrink(double *signal,int N,int J,char *wname,char *method,char *ext,char *thresh,double *denoised) {
int filt_len,i,it,len,dlen,dwt_len,min_index,sgn, MaxIter;
double sigma,norm,td,tv,te,ct,thr,temp,x_sum;
wave_object wave;
wt_object wt;
double *dout,*risk;
wave = wave_init(wname);
filt_len = wave->filtlength;
MaxIter = (int) (log((double)N / ((double)filt_len - 1.0)) / log(2.0));
if (J > MaxIter) {
printf("\n Error - The Signal Can only be iterated %d times using this wavelet. Exiting\n",MaxIter);
exit(-1);
}
wt = wt_init(wave,method,N,J);
setDWTExtension(wt,ext);
dwt(wt,signal);
len = wt->length[0];
dlen = wt->length[J];
dout = (double*)malloc(sizeof(double) * dlen);
risk = (double*)malloc(sizeof(double) * dlen);
for(it = 0; it < J;++it) {
dwt_len = wt->length[it+1];
for(i = 0; i < dlen;++i) {
dout[i] = wt->output[len+i];
}
sigma = mad(dout,dwt_len);
if ( sigma < 0.00000001) {
td = 0;
} else {
tv = sqrt(2.0 * log(dwt_len));
norm = 0.0;
for(i = 0; i < dwt_len;++i) {
norm += (wt->output[len+i] *wt->output[len+i]);
}
te =(norm - (double) dwt_len)/(double) dwt_len;
ct = pow(log((double) dwt_len)/log(2.0),1.5)/sqrt((double) dwt_len);
if (te < ct) {
td = tv;
} else {
x_sum = 0.0;
for(i = 0; i < dlen;++i) {
dout[i] = wt->output[len+i];
}
qsort(dout, N, sizeof(double), compare_double);
for(i = 0; i < dwt_len;++i) {
dout[i] = (dout[i]*dout[i]);
x_sum += dout[i];
}
for(i = 0;i < dwt_len;++i) {
risk[i] = ((double)dwt_len + 1 - 2 * ((double)i + 1) +x_sum +
dout[i]*((double)dwt_len - 1 -(double) i))/(double)dwt_len;
}
min_index = minindex(risk,dwt_len);
thr = sqrt(dout[min_index]);
td = thr < tv ? thr : tv;
}
}
td = td * sigma / 0.6745;
if(!strcmp(thresh,"hard")) {
for(i = 0; i < dwt_len;++i) {
if (fabs(wt->output[len+i]) < td) {
wt->output[len+i] = 0;
}
}
} else if(!strcmp(thresh,"soft")) {
for(i = 0; i < dwt_len;++i) {
if (fabs(wt->output[len + i]) < td) {
wt->output[len+i] = 0;
} else {
sgn = wt->output[len+i] >= 0 ? 1 : -1;
temp = sgn * (fabs(wt->output[len+i]) - td);
wt->output[len+i] = temp;
}
}
}
len += wt->length[it+1];
}
idwt(wt,denoised);
free(dout);
free(risk);
wave_free(wave);
wt_free(wt);
}