wavelib/src/cwtmath.c
2016-05-29 05:43:59 +05:30

297 lines
6.3 KiB
C
Executable File

#include "cwtmath.h"
static void nsfft_fd(fft_object obj, fft_data *inp, fft_data *oup,double lb,double ub,double *w) {
int M,N,i,j,L;
double delta,den,theta,tempr,tempi,plb;
double *temp1,*temp2;
N = obj->N;
L = N/2;
//w = (double*)malloc(sizeof(double)*N);
M = divideby(N, 2);
if (M == 0) {
printf("The Non-Standard FFT Length must be a power of 2");
exit(1);
}
temp1 = (double*)malloc(sizeof(double)*L);
temp2 = (double*)malloc(sizeof(double)*L);
delta = (ub - lb)/ N;
j = -N;
den = 2 * (ub-lb);
for(i = 0; i < N;++i) {
w[i] = (double)j/den;
j += 2;
}
fft_exec(obj,inp,oup);
for (i = 0; i < L; ++i) {
temp1[i] = oup[i].re;
temp2[i] = oup[i].im;
}
for (i = 0; i < N - L; ++i) {
oup[i].re = oup[i + L].re;
oup[i].im = oup[i + L].im;
}
for (i = 0; i < L; ++i) {
oup[N - L + i].re = temp1[i];
oup[N - L + i].im = temp2[i];
}
plb = PI2 * lb;
for(i = 0; i < N;++i) {
tempr = oup[i].re;
tempi = oup[i].im;
theta = w[i] * plb;
oup[i].re = delta * (tempr*cos(theta) + tempi*sin(theta));
oup[i].im = delta * (tempi*cos(theta) - tempr*sin(theta));
}
//free(w);
free(temp1);
free(temp2);
}
static void nsfft_bk(fft_object obj, fft_data *inp, fft_data *oup,double lb,double ub,double *t) {
int M,N,i,j,L;
double *w;
double delta,den,plb,theta;
double *temp1,*temp2;
fft_data *inpt;
N = obj->N;
L = N/2;
M = divideby(N, 2);
if (M == 0) {
printf("The Non-Standard FFT Length must be a power of 2");
exit(1);
}
temp1 = (double*)malloc(sizeof(double)*L);
temp2 = (double*)malloc(sizeof(double)*L);
w = (double*)malloc(sizeof(double)*N);
inpt = (fft_data*) malloc (sizeof(fft_data) * N);
delta = (ub - lb)/ N;
j = -N;
den = 2 * (ub-lb);
for(i = 0; i < N;++i) {
w[i] = (double)j/den;
j += 2;
}
plb = PI2 * lb;
for(i = 0; i < N;++i) {
theta = w[i] * plb;
inpt[i].re = (inp[i].re*cos(theta) - inp[i].im*sin(theta))/delta;
inpt[i].im = (inp[i].im*cos(theta) + inp[i].re*sin(theta))/delta;
}
for (i = 0; i < L; ++i) {
temp1[i] = inpt[i].re;
temp2[i] = inpt[i].im;
}
for (i = 0; i < N - L; ++i) {
inpt[i].re = inpt[i + L].re;
inpt[i].im = inpt[i + L].im;
}
for (i = 0; i < L; ++i) {
inpt[N - L + i].re = temp1[i];
inpt[N - L + i].im = temp2[i];
}
fft_exec(obj,inpt,oup);
for(i = 0; i < N;++i) {
t[i] = lb + i*delta;
}
free(w);
free(temp1);
free(temp2);
free(inpt);
}
void nsfft_exec(fft_object obj, fft_data *inp, fft_data *oup,double lb,double ub,double *w) {
if (obj->sgn == 1) {
nsfft_fd(obj,inp,oup,lb,ub,w);
} else if (obj->sgn == -1) {
nsfft_bk(obj,inp,oup,lb,ub,w);
}
}
static double fix(double x) {
// Rounds to the integer nearest to zero
if (x >= 0.) {
return floor(x);
} else {
return ceil(x);
}
}
int nint(double N) {
int i;
i = (int)(N + 0.49999);
return i;
}
double gamma(double x) {
/*
* This C program code is based on W J Cody's fortran code.
* http://www.netlib.org/specfun/gamma
*
* References:
"An Overview of Software Development for Special Functions",
W. J. Cody, Lecture Notes in Mathematics, 506,
Numerical Analysis Dundee, 1975, G. A. Watson (ed.),
Springer Verlag, Berlin, 1976.
Computer Approximations, Hart, Et. Al., Wiley and sons, New York, 1968.
*/
// numerator and denominator coefficients for 1 <= x <= 2
double y,oup,fact,sum,y2,yi,z,nsum,dsum;
int swi,n,i;
double spi = 0.9189385332046727417803297;
double pi = 3.1415926535897932384626434;
double xmax = 171.624e+0;
double xinf = 1.79e308;
double eps = 2.22e-16;
double xninf = 1.79e-308;
double num[8] = { -1.71618513886549492533811e+0,
2.47656508055759199108314e+1,
-3.79804256470945635097577e+2,
6.29331155312818442661052e+2,
8.66966202790413211295064e+2,
-3.14512729688483675254357e+4,
-3.61444134186911729807069e+4,
6.64561438202405440627855e+4 };
double den[8] = { -3.08402300119738975254353e+1,
3.15350626979604161529144e+2,
-1.01515636749021914166146e+3,
-3.10777167157231109440444e+3,
2.25381184209801510330112e+4,
4.75584627752788110767815e+3,
-1.34659959864969306392456e+5,
-1.15132259675553483497211e+5 };
// Coefficients for Hart's Minimax approximation x >= 12
double c[7] = { -1.910444077728e-03,
8.4171387781295e-04,
-5.952379913043012e-04,
7.93650793500350248e-04,
-2.777777777777681622553e-03,
8.333333333333333331554247e-02,
5.7083835261e-03 };
y = x;
swi = 0;
fact = 1.0;
n = 0;
if ( y < 0.) {
// Negative x
y = -x;
yi = fix(y);
oup = y - yi;
if (oup != 0.0) {
if (yi != fix(yi * .5) * 2.) {
swi = 1;
}
fact = -pi / sin(pi * oup);
y += 1.;
} else {
return xinf;
}
}
if (y < eps) {
if (y >= xninf) {
oup = 1.0/y;
} else {
return xinf;
}
} else if (y < 12.) {
yi = y;
if ( y < 1.) {
z = y;
y += 1.;
} else {
n = ( int ) y - 1;
y -= ( double ) n;
z = y - 1.0;
}
nsum = 0.;
dsum = 1.;
for (i = 0; i < 8; ++i) {
nsum = (nsum + num[i]) * z;
dsum = dsum * z + den[i];
}
oup = nsum / dsum + 1.;
if (yi < y) {
oup /= yi;
} else if (yi > y) {
for (i = 0; i < n; ++i) {
oup *= y;
y += 1.;
}
}
} else {
if (y <= xmax) {
y2 = y * y;
sum = c[6];
for (i = 0; i < 6; ++i) {
sum = sum / y2 + c[i];
}
sum = sum / y - y + spi;
sum += (y - .5) * log(y);
oup = exp(sum);
} else {
return(xinf);
}
}
if (swi) {
oup = -oup;
}
if (fact != 1.) {
oup = fact / oup;
}
return oup;
}