mirror of
https://github.com/simon987/od-database.git
synced 2025-12-16 08:09:04 +00:00
Elasticsearch search engine (import from json)
This commit is contained in:
135
search/search.py
Normal file
135
search/search.py
Normal file
@@ -0,0 +1,135 @@
|
||||
import elasticsearch
|
||||
|
||||
|
||||
class IndexingError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class SearchEngine:
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def import_json(self, in_file: str, website_id: int):
|
||||
raise NotImplementedError
|
||||
|
||||
def search(self, query) -> list:
|
||||
raise NotImplementedError
|
||||
|
||||
def reset(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def ping(self):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ElasticSearchEngine(SearchEngine):
|
||||
|
||||
def __init__(self, index_name):
|
||||
super().__init__()
|
||||
self.index_name = index_name
|
||||
self.es = elasticsearch.Elasticsearch()
|
||||
|
||||
if not self.es.indices.exists(self.index_name):
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
print("Elasticsearch first time setup")
|
||||
if self.es.indices.exists(self.index_name):
|
||||
self.es.indices.delete(index=self.index_name)
|
||||
self.es.indices.create(index=self.index_name)
|
||||
self.es.indices.close(index=self.index_name)
|
||||
|
||||
# Paths
|
||||
self.es.indices.put_settings(body=
|
||||
{"analysis": {
|
||||
"tokenizer": {
|
||||
"path_tokenizer": {
|
||||
"type": "path_hierarchy"
|
||||
}
|
||||
}
|
||||
}}, index=self.index_name)
|
||||
|
||||
self.es.indices.put_settings(body=
|
||||
{"analysis": {
|
||||
"analyzer": {
|
||||
"path_analyser": {
|
||||
"tokenizer": "path_tokenizer", "filter": ["lowercase"]
|
||||
}
|
||||
}
|
||||
}}, index=self.index_name)
|
||||
|
||||
# File names
|
||||
self.es.indices.put_settings(body=
|
||||
{"analysis": {
|
||||
"tokenizer": {
|
||||
"my_nGram_tokenizer": {
|
||||
"type": "nGram", "min_gram": 3, "max_gram": 3}
|
||||
}
|
||||
}}, index=self.index_name)
|
||||
self.es.indices.put_settings(body=
|
||||
{"analysis": {
|
||||
"analyzer": {
|
||||
"my_nGram": {
|
||||
"tokenizer": "my_nGram_tokenizer",
|
||||
"filter": ["lowercase", "asciifolding"]
|
||||
}
|
||||
}
|
||||
}}, index=self.index_name)
|
||||
|
||||
# Mappings
|
||||
self.es.indices.put_mapping(body={"properties": {
|
||||
"path": {"type": "text", "analyzer": "path_analyser"},
|
||||
"name": {"analyzer": "my_nGram", "type": "text"},
|
||||
"mtime": {"type": "date", "format": "epoch_millis"},
|
||||
"size": {"type": "long"},
|
||||
"website_id": {"type": "integer"}
|
||||
}}, doc_type="file", index=self.index_name)
|
||||
|
||||
self.es.indices.open(index=self.index_name)
|
||||
|
||||
def reset(self):
|
||||
self.init()
|
||||
|
||||
def ping(self):
|
||||
return self.es.ping()
|
||||
|
||||
def import_json(self, in_file: str, website_id: int):
|
||||
import_every = 1000
|
||||
|
||||
with open(in_file, "r") as f:
|
||||
docs = []
|
||||
|
||||
line = f.readline()
|
||||
while line:
|
||||
docs.append(line[:-1]) # Remove trailing new line
|
||||
|
||||
if len(docs) >= import_every:
|
||||
self._index(docs, website_id)
|
||||
docs.clear()
|
||||
line = f.readline()
|
||||
self._index(docs, website_id)
|
||||
|
||||
def _index(self, docs, website_id):
|
||||
print("Indexing " + str(len(docs)) + " docs")
|
||||
bulk_string = ElasticSearchEngine.create_bulk_index_string(docs, website_id)
|
||||
result = self.es.bulk(body=bulk_string, index=self.index_name, doc_type="file")
|
||||
|
||||
if result["errors"]:
|
||||
print(result)
|
||||
raise IndexingError
|
||||
|
||||
@staticmethod
|
||||
def create_bulk_index_string(docs: list, website_id: int):
|
||||
|
||||
result = ""
|
||||
|
||||
action_string = '{"index":{}}\n'
|
||||
website_id_string = ',"website_id":' + str(website_id) + '}\n' # Add website_id param to each doc
|
||||
|
||||
for doc in docs:
|
||||
result += action_string + doc[:-1] + website_id_string
|
||||
return result
|
||||
|
||||
def search(self, query):
|
||||
pass
|
||||
Reference in New Issue
Block a user