mirror of
https://github.com/simon987/Simple-Incremental-Search-Tool.git
synced 2025-04-16 08:46:49 +00:00
96 lines
3.5 KiB
Python
96 lines
3.5 KiB
Python
import json
|
|
import elasticsearch
|
|
from threading import Thread
|
|
import subprocess
|
|
import requests
|
|
|
|
|
|
class Indexer:
|
|
|
|
def __init__(self, index: str):
|
|
|
|
self.index_name = index
|
|
self.es = elasticsearch.Elasticsearch()
|
|
|
|
try:
|
|
requests.head("http://localhost:9200")
|
|
print("elasticsearch is already running")
|
|
|
|
except requests.exceptions.ConnectionError:
|
|
import time
|
|
t = Thread(target=Indexer.run_elasticsearch)
|
|
t.daemon = True
|
|
t.start()
|
|
|
|
time.sleep(10)
|
|
self.init()
|
|
|
|
@staticmethod
|
|
def run_elasticsearch():
|
|
subprocess.Popen(["elasticsearch/bin/elasticsearch"])
|
|
|
|
@staticmethod
|
|
def create_bulk_index_string(docs: list, directory: int):
|
|
"""
|
|
Creates a insert string for sending to elasticsearch
|
|
"""
|
|
|
|
result = ""
|
|
|
|
action_string = '{"index":{}}\n'
|
|
|
|
for doc in docs:
|
|
doc["directory"] = directory
|
|
result += action_string
|
|
result += json.dumps(doc) + "\n"
|
|
|
|
return result
|
|
|
|
def index(self, docs: list, directory: int):
|
|
print("Indexing " + str(len(docs)) + " docs")
|
|
index_string = Indexer.create_bulk_index_string(docs, directory)
|
|
self.es.bulk(body=index_string, index=self.index_name, doc_type="file", refresh="true")
|
|
|
|
def clear(self):
|
|
|
|
self.es.indices.delete(self.index_name)
|
|
self.es.indices.create(self.index_name)
|
|
|
|
def init(self):
|
|
self.es.indices.delete(index=self.index_name)
|
|
self.es.indices.create(index=self.index_name)
|
|
self.es.indices.close(index=self.index_name)
|
|
|
|
self.es.indices.put_settings(body={
|
|
"analysis": {"tokenizer": {"path_tokenizer": {"type": "path_hierarchy"}}}},
|
|
index=self.index_name)
|
|
self.es.indices.put_settings(body={
|
|
"analysis": {"tokenizer": {"my_nGram_tokenizer": {"type": "nGram", "min_gram": 3, "max_gram": 3}}}},
|
|
index=self.index_name)
|
|
self.es.indices.put_settings(body={
|
|
"analysis": {"analyzer": {"path_analyser": {"tokenizer": "path_tokenizer", "filter": ["lowercase"]}}}},
|
|
index=self.index_name)
|
|
self.es.indices.put_settings(body={
|
|
"analysis": {"analyzer": {"my_nGram": {"tokenizer": "my_nGram_tokenizer", "filter": ["lowercase",
|
|
"asciifolding"]}}}},
|
|
index=self.index_name)
|
|
|
|
self.es.indices.put_mapping(body={"properties": {
|
|
"path": {"type": "text", "analyzer": "path_analyser", "copy_to": "suggest-path"},
|
|
"suggest-path": {"type": "completion", "analyzer": "keyword"},
|
|
"mime": {"type": "text", "analyzer": "path_analyser", "copy_to": "mime_kw"},
|
|
"mime_kw": {"type": "keyword"},
|
|
"directory": {"type": "short"},
|
|
"name": {"analyzer": "my_nGram", "type": "text"},
|
|
"album": {"analyzer": "my_nGram", "type": "text"},
|
|
"artist": {"analyzer": "my_nGram", "type": "text"},
|
|
"title": {"analyzer": "my_nGram", "type": "text"},
|
|
"genre": {"analyzer": "my_nGram", "type": "text"},
|
|
"album_artist": {"analyzer": "my_nGram", "type": "text"},
|
|
"font_name": {"analyzer": "my_nGram", "type": "text"},
|
|
}}, doc_type="file", index=self.index_name)
|
|
|
|
self.es.indices.open(index=self.index_name)
|
|
|
|
print("Initialised elesticsearch")
|