101 lines
3.9 KiB
Python

import json
import elasticsearch
import requests
import config
class Indexer:
def __init__(self, index: str):
self.index_name = index
self.es = elasticsearch.Elasticsearch()
requests.head(config.elasticsearch_url)
if self.es.indices.exists(self.index_name):
print("Index is already setup")
else:
print("First time setup...")
self.init()
@staticmethod
def create_bulk_index_string(docs: list, directory: int):
"""
Creates a insert string for sending to elasticsearch
"""
result = ""
action_string = '{"index":{}}\n'
for doc in docs:
doc["directory"] = directory
result += action_string
result += json.dumps(doc) + "\n"
return result
def index(self, docs: list, directory: int):
print("Indexing " + str(len(docs)) + " docs")
index_string = Indexer.create_bulk_index_string(docs, directory)
self.es.bulk(body=index_string, index=self.index_name, doc_type="file", refresh="true")
def clear(self):
self.es.indices.delete(self.index_name)
self.es.indices.create(self.index_name)
def init(self):
if self.es.indices.exists(self.index_name):
self.es.indices.delete(index=self.index_name)
self.es.indices.create(index=self.index_name)
self.es.indices.close(index=self.index_name)
self.es.indices.put_settings(body={
"analysis": {"tokenizer": {"path_tokenizer": {"type": "path_hierarchy"}}}},
index=self.index_name)
self.es.indices.put_settings(body={
"analysis": {"tokenizer": {
"my_nGram_tokenizer": {"type": "nGram", "min_gram": config.nGramMin, "max_gram": config.nGramMax}}}},
index=self.index_name)
self.es.indices.put_settings(body={
"analysis": {"analyzer": {"path_analyser": {"tokenizer": "path_tokenizer", "filter": ["lowercase"]}}}},
index=self.index_name)
self.es.indices.put_settings(body={
"analysis": {"analyzer": {"my_nGram": {"tokenizer": "my_nGram_tokenizer", "filter": ["lowercase",
"asciifolding"]}}}},
index=self.index_name)
self.es.indices.put_settings(body={
"analysis": {"analyzer": {"content_analyser": {"tokenizer": "standard", "filter": ["lowercase"]}}}},
index=self.index_name)
self.es.indices.put_mapping(body={"properties": {
"path": {"type": "text", "analyzer": "path_analyser", "copy_to": "suggest-path"},
"suggest-path": {"type": "completion", "analyzer": "keyword"},
"mime": {"type": "keyword"},
"encoding": {"type": "keyword"},
"format_name": {"type": "keyword"},
"format_long_name": {"type": "keyword"},
"duration": {"type": "float"},
"width": {"type": "integer"},
"height": {"type": "integer"},
"mtime": {"type": "integer"},
"size": {"type": "long"},
"directory": {"type": "short"},
"name": {"analyzer": "content_analyser", "type": "text",
"fields": {"nGram": {"type": "text", "analyzer": "my_nGram"}}
},
"album": {"analyzer": "my_nGram", "type": "text"},
"artist": {"analyzer": "my_nGram", "type": "text"},
"title": {"analyzer": "my_nGram", "type": "text"},
"genre": {"analyzer": "my_nGram", "type": "text"},
"album_artist": {"analyzer": "my_nGram", "type": "text"},
"content": {"analyzer": "content_analyser", "type": "text"},
}}, doc_type="file", index=self.index_name, include_type_name=True)
self.es.indices.open(index=self.index_name)
print("Initialised elesticsearch")